M.B.A.

THEORY EXAMINATION (SEM-II) 2016-17 QUANTITATIVE TECHNIQUES FOR MANAGERS

Time: 3 Hours

Max. Marks: 70

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

1. Explain the following: $7 \times 2 = 14$

- (a) What is operations research?
- What is the difference between decision making under risk and uncertainty? (b)
- What do you mean by balanced assignment problem? (c)
- (d) Define transportation problem.
- What is two person zero sum game? (e)
- **(f)** Explain group replacement policy.
- What is the importance of dummy activity in network diagram? (g)

SECTION - B

2. Attempt any five of the following questions: $5 \times 7 = 35$

Solve the following minimal assignment problem whose effectiveness matrix is as below:

			Job	
	I	II	III	IV
A	2	35	4	5
В	4	5	6	7
C	7	8	9	8
D	3	5	8	4
	A B C D	I	A 2 35	I II III A 2 35 4 B 4 5 6

(b) Find the optimal solution for transporting the products at a minimum cost for the following transportation problem with cost structures as follows:

To →	_			Availability	
From	P	Q	R		
A	16	19	12	14	
В	22	13	19	16	
C	14	28	8	12	
Requirement	10	15	17	42	

(c) Solve the following L.P.P. by graphical method

Max
$$z = 22x_1 + 18x_2$$

Subject to,

$$360x_1 + 240x_2 \le 5760$$

$$x_1+x_2\leq 20.$$

Where $x_1, x_2 \ge 0$

- (d) Explain the maximin - minimax principle of game theory.
- (e) We have five jobs, each of which must go through the machines A, B and C in the order ABC.

Job i	1	2	3	4	5
Machine A (Ai)	5	7.	6	9	5
Machine B (Bi)	2	1	4	5	3
Machine C (Ci)	3	7	5	6	7

Determine a sequence for the jobs that will minimize the total elapsed time. Also calculate the total elapsed time.

(f) Solve the following game whose pay-off matrix is given by:

	Player B						
		I	II	Ш	IV		
	I	3	2	4	0		
D) A	II	2	4	2	4		
Player A	III	4	2	4	0		
	IV	0	4	0	8		

(g) What is the waiting lime problem? Also discuss the assumption underlying common queuing models.

(h) The maintenance cost and resale value per year of a machine whose purchase price is Rs. 7000 is given below.

Year	1	2	3	4	5	6	7	8
Operating Cost (Rs.)	900	1200	1600	2100	2800	3700	4700	5900
Resale Value (Rs.0	4000	2000	1200	600	500	400	400	400

When should the machine be replaced?

SECTION - C

Attempt any two of the following questions:

 $2 \times 10.5 = 21$

3. Solve the following L.P.P.

Max.
$$z = 5x_1 + 10x_2 + 8x_3$$

Subject to

$$3x_1 + 5x_2 + 2x_3 \le 60$$

$$4x_1 + 4x_2 + 4x_3 \le 72$$

$$2x_1 + 4x_2 + 5x_3 \le 100$$

Where $x_1, x_2, x_3 \ge 0$

4. If you make a unit product and it is sold you gain Rs. 5, if you make a unit and it is not sold you loose Rs. 3, suppose the probability distribution of the number of units demanded is as follows- How wary with should you wake?

 No. of units demanded
 1
 2
 3
 4
 5

 Probability
 0.20
 0.25
 0.30
 0.05
 0

5. Activity predecessor time estimate (in weeks) of a PERT network are as follow

Activity	Predecessor Activity	to	tm	tp
A	-	2	3	10
В	-	2	3	4
С	A	1	2	3
D	A	4	6	14
E	В	4	5	12
F	С	3	4	5
G	D, E	1	1	7

- (a) Draw the network and identify the critical path.
- (b) Calculate the variance and standard deviation of the project.